Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 216(7): 1471-1473, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31209069

RESUMO

Members of the MYC family of oncogenes are master regulators of mRNA translation. In this issue of JEM, Singh et al. (https://doi.org/10.1084/jem.20181726) demonstrate that c-Myc governs protein synthesis in lymphoma cells by interfering with SRSF1- and RBM42-mediated suppression of mRNA translation and by altering selection of translation initiation sites.


Assuntos
Linfoma/genética , Biossíntese de Proteínas , Humanos , Oncogenes , Processamento de Proteína Pós-Traducional , RNA Mensageiro
2.
Cell Metab ; 28(6): 817-832.e8, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30244971

RESUMO

There is increasing interest in therapeutically exploiting metabolic differences between normal and cancer cells. We show that kinase inhibitors (KIs) and biguanides synergistically and selectively target a variety of cancer cells. Synthesis of non-essential amino acids (NEAAs) aspartate, asparagine, and serine, as well as glutamine metabolism, are major determinants of the efficacy of KI/biguanide combinations. The mTORC1/4E-BP axis regulates aspartate, asparagine, and serine synthesis by modulating mRNA translation, while ablation of 4E-BP1/2 substantially decreases sensitivity of breast cancer and melanoma cells to KI/biguanide combinations. Efficacy of the KI/biguanide combinations is also determined by HIF-1α-dependent perturbations in glutamine metabolism, which were observed in VHL-deficient renal cancer cells. This suggests that cancer cells display metabolic plasticity by engaging non-redundant adaptive mechanisms, which allows them to survive therapeutic insults that target cancer metabolism.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Resistencia a Medicamentos Antineoplásicos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias , Transdução de Sinais/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aminoácidos/metabolismo , Animais , Biguanidas/farmacologia , Proteínas de Ciclo Celular , Fatores de Iniciação em Eucariotos/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Células K562 , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fosfoproteínas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Mol Cell ; 68(5): 885-900.e6, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29220654

RESUMO

The integrated stress response (ISR) is a homeostatic mechanism induced by endoplasmic reticulum (ER) stress. In acute/transient ER stress, decreased global protein synthesis and increased uORF mRNA translation are followed by normalization of protein synthesis. Here, we report a dramatically different response during chronic ER stress. This chronic ISR program is characterized by persistently elevated uORF mRNA translation and concurrent gene expression reprogramming, which permits simultaneous stress sensing and proteostasis. The program includes PERK-dependent switching to an eIF3-dependent translation initiation mechanism, resulting in partial, but not complete, translational recovery, which, together with transcriptional reprogramming, selectively bolsters expression of proteins with ER functions. Coordination of transcriptional and translational reprogramming prevents ER dysfunction and inhibits "foamy cell" development, thus establishing a molecular basis for understanding human diseases associated with ER dysfunction.


Assuntos
Estresse do Retículo Endoplasmático , Fator de Iniciação 3 em Eucariotos/metabolismo , Fibroblastos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/biossíntese , Transcrição Gênica , eIF-2 Quinase/metabolismo , Animais , Reprogramação Celular , Fator de Iniciação 3 em Eucariotos/genética , Fibroblastos/patologia , Células HEK293 , Humanos , Camundongos , Fases de Leitura Aberta , Fenótipo , Proteostase , Interferência de RNA , RNA Mensageiro/genética , Transdução de Sinais , Fatores de Tempo , Transfecção , eIF-2 Quinase/genética
4.
Mol Cell Biol ; 37(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28096188

RESUMO

The scaffolding adapter protein Gab2 (Grb2-associated binder) promotes cell proliferation, survival, and motility by engaging several signaling pathways downstream of growth factor and cytokine receptors. In particular, Gab2 plays essential roles in mast cells, as it is required for phosphoinositide 3-kinase (PI3K) activation in response to Kit and the high-affinity IgE receptor. While the positive role of Gab2 in PI3K signaling is well documented, very little is known about the mechanisms that attenuate its function. Here we show that Gab2 becomes phosphorylated on multiple proline-directed sites upon stimulation of the Ras/extracellular signal-regulated kinase (ERK) signaling pathway. We demonstrate that ERK1 and ERK2 interact with Gab2 via a novel docking motif, which is required for subsequent Gab2 phosphorylation in response to ERK1/2 activation. We identified four ERK1/2-dependent phosphorylation sites in Gab2 that prevent the recruitment of the p85 regulatory subunit of PI3K. Using bone marrow-derived mast cells to study Gab2-dependent signaling, we found that the inhibition of ERK1/2 activity promotes Akt signaling in response to Kit and the high-affinity IgE receptor. Together, our results indicate that ERK1/2 participates in a negative-feedback loop that attenuates PI3K/Akt signaling in response to various agonists.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Retroalimentação Fisiológica , Proteína Adaptadora GRB2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Proteína Adaptadora GRB2/química , Células HEK293 , Humanos , Mastócitos/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Fosforilação , Domínios Proteicos , Proteínas ras/metabolismo
5.
Trends Cell Biol ; 26(12): 918-933, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27426745

RESUMO

Control of mRNA translation plays a crucial role in the regulation of gene expression and is critical for cellular homeostasis. Dysregulation of translation initiation factors has been documented in several pathologies including cancer. Aberrant function of translation initiation factors leads to translation reprogramming that promotes proliferation, survival, angiogenesis, and metastasis. In such context, understanding how altered levels (and presumably activity) of initiation factors can contribute to tumor initiation and/or maintenance is of major interest for the development of novel therapeutic strategies. In this review we provide an overview of translation initiation mechanisms and focus on recent findings describing the role of individual initiation factors and their aberrant activity in cancer.


Assuntos
Neoplasias/metabolismo , Iniciação Traducional da Cadeia Peptídica , Fatores de Iniciação de Peptídeos/metabolismo , Animais , Humanos , Modelos Biológicos
6.
Nat Commun ; 7: 11127, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27040916

RESUMO

Ternary complex (TC) and eIF4F complex assembly are the two major rate-limiting steps in translation initiation regulated by eIF2α phosphorylation and the mTOR/4E-BP pathway, respectively. How TC and eIF4F assembly are coordinated, however, remains largely unknown. We show that mTOR suppresses translation of mRNAs activated under short-term stress wherein TC recycling is attenuated by eIF2α phosphorylation. During acute nutrient or growth factor stimulation, mTORC1 induces eIF2ß phosphorylation and recruitment of NCK1 to eIF2, decreases eIF2α phosphorylation and bolsters TC recycling. Accordingly, eIF2ß mediates the effect of mTORC1 on protein synthesis and proliferation. In addition, we demonstrate a formerly undocumented role for CK2 in regulation of translation initiation, whereby CK2 stimulates phosphorylation of eIF2ß and simultaneously bolsters eIF4F complex assembly via the mTORC1/4E-BP pathway. These findings imply a previously unrecognized mode of translation regulation, whereby mTORC1 and CK2 coordinate TC and eIF4F complex assembly to stimulate cell proliferation.


Assuntos
Caseína Quinase II/fisiologia , Fator de Iniciação 4F em Eucariotos/metabolismo , Complexos Multiproteicos/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Fatores de Complexo Ternário/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/fisiologia , Regulação da Expressão Gênica , Células HEK293 , Humanos , Células MCF-7 , Alvo Mecanístico do Complexo 1 de Rapamicina , Modelos Genéticos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas Oncogênicas/metabolismo , Iniciação Traducional da Cadeia Peptídica , Fosforilação , Transdução de Sinais , Estresse Fisiológico , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
7.
Genome Res ; 26(5): 636-48, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26984228

RESUMO

The diversity of MTOR-regulated mRNA translation remains unresolved. Whereas ribosome-profiling suggested that MTOR almost exclusively stimulates translation of the TOP (terminal oligopyrimidine motif) and TOP-like mRNAs, polysome-profiling indicated that MTOR also modulates translation of mRNAs without the 5' TOP motif (non-TOP mRNAs). We demonstrate that in ribosome-profiling studies, detection of MTOR-dependent changes in non-TOP mRNA translation was obscured by low sensitivity and methodology biases. Transcription start site profiling using nano-cap analysis of gene expression (nanoCAGE) revealed that not only do many MTOR-sensitive mRNAs lack the 5' TOP motif but that 5' UTR features distinguish two functionally and translationally distinct subsets of MTOR-sensitive mRNAs: (1) mRNAs with short 5' UTRs enriched for mitochondrial functions, which require EIF4E but are less EIF4A1-sensitive; and (2) long 5' UTR mRNAs encoding proliferation- and survival-promoting proteins, which are both EIF4E- and EIF4A1-sensitive. Selective inhibition of translation of mRNAs harboring long 5' UTRs via EIF4A1 suppression leads to sustained expression of proteins involved in respiration but concomitant loss of those protecting mitochondrial structural integrity, resulting in apoptosis. Conversely, simultaneous suppression of translation of both long and short 5' UTR mRNAs by MTOR inhibitors results in metabolic dormancy and a predominantly cytostatic effect. Thus, 5' UTR features define different modes of MTOR-sensitive translation of functionally distinct subsets of mRNAs, which may explain the diverse impact of MTOR and EIF4A inhibitors on neoplastic cells.


Assuntos
Regiões 5' não Traduzidas/fisiologia , Fator de Iniciação 4E em Eucariotos/metabolismo , Biossíntese de Proteínas/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Apoptose/fisiologia , Feminino , Humanos , Células MCF-7
8.
Mutagenesis ; 30(2): 169-76, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25688110

RESUMO

The mechanistic/mammalian target of rapamycin (mTOR) is a conserved protein kinase that controls several anabolic processes required for cell growth and proliferation. As such, mTOR has been implicated in an increasing number of pathological conditions, including cancer, obesity, type 2 diabetes and neurodegeneration. As part of the mTOR complex 1 (mTORC1), mTOR regulates cell growth by promoting the biosynthesis of proteins, lipids and nucleic acids. Several mTORC1 substrates have been shown to regulate protein synthesis, including the eukaryotic initiation factor 4E (eIF4E)-binding proteins (4E-BPs) and the ribosomal S6 kinases (S6Ks) 1 and 2. In this work, we focus on the signalling pathways that lie both upstream and downstream of mTORC1, as well as their relevance to human pathologies. We further discuss pharmacological approaches that target mTOR and their applications for the treatment of cancer.


Assuntos
Complexos Multiproteicos/metabolismo , Neoplasias/enzimologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/fisiologia , Antineoplásicos/uso terapêutico , Processos de Crescimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia
9.
Genes Dev ; 28(4): 357-71, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24532714

RESUMO

The mammalian target of rapamycin (mTOR) promotes cell growth and proliferation by promoting mRNA translation and increasing the protein synthetic capacity of the cell. Although mTOR globally promotes translation by regulating the mRNA 5' cap-binding protein eIF4E (eukaryotic initiation factor 4E), it also preferentially regulates the translation of certain classes of mRNA via unclear mechanisms. To help fill this gap in knowledge, we performed a quantitative proteomic screen to identify proteins that associate with the mRNA 5' cap in an mTOR-dependent manner. Using this approach, we identified many potential regulatory factors, including the putative RNA-binding protein LARP1 (La-related protein 1). Our results indicate that LARP1 associates with actively translating ribosomes via PABP and that LARP1 stimulates the translation of mRNAs containing a 5' terminal oligopyrimidine (TOP) motif, encoding for components of the translational machinery. We found that LARP1 associates with the mTOR complex 1 (mTORC1) and is required for global protein synthesis as well as cell growth and proliferation. Together, these data reveal important molecular mechanisms involved in TOP mRNA translation and implicate LARP1 as an important regulator of cell growth and proliferation.


Assuntos
Autoantígenos/metabolismo , Regulação da Expressão Gênica , Proteômica , Pirimidinas/metabolismo , RNA Mensageiro/genética , Ribonucleoproteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Autoantígenos/genética , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Células HEK293 , Humanos , Camundongos , Proteínas de Ligação ao Cap de RNA/metabolismo , Ribonucleoproteínas/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
10.
Mol Cell Biol ; 32(22): 4572-84, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22966201

RESUMO

Processing bodies (PBs, or P bodies) are cytoplasmic granules involved in mRNA storage and degradation that participate in the regulation of gene expression. PBs concentrate nontranslated mRNAs and several factors involved in mRNA decay and translational repression, including the eukaryotic translation initiation factor 4E-transporter (4E-T). 4E-T is required for PB assembly, but little is known about the molecular mechanisms that regulate its function. Here, we demonstrate that oxidative stress promotes multisite 4E-T phosphorylation. We show that the c-Jun N-terminal kinase (JNK) is targeted to PBs in response to oxidative stress and promotes the phosphorylation of 4E-T. Quantitative mass spectrometry analysis reveals that JNK phosphorylates 4E-T on six proline-directed sites that are required for the formation of the 4E-T complex upon stress. We have developed an image-based computational method to quantify the size, number, and density of PBs in cells, and we find that while 4E-T is required for steady-state PB assembly, its phosphorylation facilitates the formation of larger PBs upon oxidative stress. Using polysomal mRNA profiling, we assessed global and specific mRNA translation but did not find that 4E-T phosphorylation impacts translational control. Collectively, these data support a model whereby PB assembly is regulated by a two-step mechanism involving a 4E-T-dependent assembly stage in unstressed cells and a 4E-T phosphorylation-dependent aggregation stage in response to stress stimuli.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Regulação da Expressão Gênica , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Mensageiro/metabolismo , Linhagem Celular , Grânulos Citoplasmáticos/genética , Humanos , Processamento de Imagem Assistida por Computador , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Espectrometria de Massas , Imagem Molecular , Proteínas de Transporte Nucleocitoplasmático/genética , Estresse Oxidativo , Fosforilação , Plasmídeos , Prolina/metabolismo , Biossíntese de Proteínas , Transporte Proteico , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Transdução de Sinais/genética , Transfecção
11.
Microbiol Mol Biol Rev ; 75(1): 50-83, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21372320

RESUMO

The mitogen-activated protein kinases (MAPKs) regulate diverse cellular programs by relaying extracellular signals to intracellular responses. In mammals, there are more than a dozen MAPK enzymes that coordinately regulate cell proliferation, differentiation, motility, and survival. The best known are the conventional MAPKs, which include the extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun amino-terminal kinases 1 to 3 (JNK1 to -3), p38 (α, ß, γ, and δ), and ERK5 families. There are additional, atypical MAPK enzymes, including ERK3/4, ERK7/8, and Nemo-like kinase (NLK), which have distinct regulation and functions. Together, the MAPKs regulate a large number of substrates, including members of a family of protein Ser/Thr kinases termed MAPK-activated protein kinases (MAPKAPKs). The MAPKAPKs are related enzymes that respond to extracellular stimulation through direct MAPK-dependent activation loop phosphorylation and kinase activation. There are five MAPKAPK subfamilies: the p90 ribosomal S6 kinase (RSK), the mitogen- and stress-activated kinase (MSK), the MAPK-interacting kinase (MNK), the MAPK-activated protein kinase 2/3 (MK2/3), and MK5 (also known as p38-regulated/activated protein kinase [PRAK]). These enzymes have diverse biological functions, including regulation of nucleosome and gene expression, mRNA stability and translation, and cell proliferation and survival. Here we review the mechanisms of MAPKAPK activation by the different MAPKs and discuss their physiological roles based on established substrates and recent discoveries.


Assuntos
Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Animais , Ativação Enzimática , Humanos , Camundongos , Dados de Sequência Molecular , Especificidade por Substrato
12.
Curr Biol ; 18(17): 1269-77, 2008 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-18722121

RESUMO

BACKGROUND: The mammalian target of rapamycin (mTOR) is a Ser/Thr kinase that controls cell growth in response to mitogens, as well as amino acid and energy sufficiency. The scaffolding protein Raptor binds to mTOR and recruits substrates to the rapamycin-sensitive mTOR complex 1 (mTORC1). Although Raptor has been shown to be essential for mTORC1 activity, the mechanisms regulating Raptor function remain unknown. RESULTS: Here, we demonstrate that Raptor becomes highly phosphorylated on RXRXXpS/T consensus motifs after activation of the Ras/mitogen-activated protein kinase (MAPK) pathway. Using pharmacological inhibitors and RNA interference, we show that the p90 ribosomal S6 kinases (RSKs) 1 and 2 are required for Raptor phosphorylation in vivo and directly phosphorylate Raptor in vitro. Quantitative mass spectrometry and site-directed mutagenesis revealed that RSK specifically phosphorylates Raptor within an evolutionarily conserved region with no previously known function. Interestingly, expression of oncogenic forms of Ras and MEK that elevate mTORC1 activity induced strong and constitutive phosphorylation of Raptor on these residues. Importantly, we demonstrate that expression of Raptor mutants lacking RSK-dependent phosphorylation sites markedly reduced mTOR phosphotransferase activity, indicating that RSK-mediated phosphorylation of Raptor is important for mTORC1 activation by the Ras/MAPK pathway. CONCLUSIONS: We propose a unique mode of mTOR regulation in which RSK-mediated phosphorylation of Raptor regulates mTORC1 activity and thus suggest a means by which the Ras/MAPK pathway might promote rapamycin-sensitive signaling independently of the PI3K/Akt pathway.


Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/fisiologia , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linhagem Celular , Células HeLa , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Modelos Biológicos , Complexos Multiproteicos , Células NIH 3T3 , Fosforilação , Proteínas Quinases/metabolismo , Proteínas/química , Proteína Regulatória Associada a mTOR , Serina/metabolismo , Especificidade por Substrato , Serina-Treonina Quinases TOR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...